
Scientific Visualization, 2021, volume 13, number 1, pages 124 - 137, DOI: 10.26583/sv.13.1.09 

Safety critical visualization of the flight instruments and  

the environment for pilot cockpit 
 

B.Kh.  Barladian1,A, A.G.  Voloboy2,A, L.Z.  Shapiro3,A, N.B.  Deryabin4,A, I.V.  Valiev5,A, 
S.V.  Andreev6,A, Yu.A.  Solodelov7,B, V.A.  Galaktionov8,A 

 
A Keldysh Institute of Applied Mathematics RAS 

B State Res. Institute of Aviation Systems (GosNIIAS) 
 

1 ORCID: 0000-0002-2391-2067, bbarladian@gmail.com 
2 ORCID: 0000-0003-1252-8294, voloboy@gin.keldysh.ru 

3 ORCID: 0000-0002-6350-851X, pls@gin.keldysh.ru 
4 ORCID: 0000-0003-1248-6047, dek@keldysh.ru 

5 ORCID: 0000-0003-2937-8480, piv@gin.kldysh.ru 
6 ORCID: 0000-0001-8029-1124, esa@keldysh.ru 

7 ORCID: 0000-0001-5891-7645, yasolodelov@2100.gosniias.ru 
8 ORCID: 0000-0001-6460-7539, vlgal@gin.keldysh.ru 

  
Abstract 
The article is devoted to the pilot display visualization system for cockpit of a civil air-

craft. Different content of modern pilot displays is discussed. The peculiarity of visualization 
system development for avionics is considered. All software used in civil aviation systems is 
safety critical and must comply with international safety standards. This imposes additional 
requirements both on the hardware used and the software development process. The core of 
the pilot display visualization system is OpenGL Safety Critical (SC) library. In the paper both 
the software and hardware OpenGL SC implementations elaborated by us are presented. We 
describe the aspects of rendering speedup by optimizing of OpenGL SC codes for the specifics 
of aviation application, by usage of processor multiple cores and, finally, by elaboration of li-
brary exploiting the GPU hardware acceleration. Achieved rendering speed measured for real 
aviation applications is reported in the paper. Only relatively simple applications can be ren-
dered at an acceptable frame rate without using a GPU. Also further development and possi-
bility of the visualization system certification are discussed. The elaborated visualization 
software is intended for use with the Russian real-time operating system JetOS. 

  
Keywords: pilot display, glass cockpit, flight instruments visualization, OpenGL Safety 

Critical. 

 

1. Introduction 
In recent decades civil aircraft cockpits become significantly more complex. Aircraft equip-
ment and systems have improved operational performance and some aspects of situational 
awareness. At the same time they significantly raised the requirements to pilot qualifications. 
An increase in the capacity of passenger ships, an increase in the duration of flights in adverse 
weather conditions also increase the psychological burden on the pilots. The significant pilot 
mental efforts are required to keep track of the number of indicators and instruments. This 
necessitated the development of a new display concept. Accordingly, both the indicators and 
the layout of the display panel should be user-friendly to improve the interaction between the 
pilot and the aircraft [1, 2]. Poor interaction between the pilot and the interface in airplanes 
can lead to accidents. In this regard, the issues of design and implementation of instruments 
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in the cockpit are of great importance from the point of view of ensuring the safe and efficient 
work of pilots.  
Traditionally, one display or dial was dedicated for one flight instrument. But with introduc-
tion of Electronic Flight Instrument Systems a modern aircraft have got “glass cockpit”. This 
new interface ideology allows to improve flight data perception [3] by combining important 
information into one multi-functional display which provides integrated, easily comprehensi-
ble picture of aircraft. Nowadays, information from several sources is visualized on one large 
screen at once (for example, the dashboard of the MC-21 aircraft shown in Fig. 1). Moreover 
the display can be configurable and contain different information in different flight segments. 
The study [4] discovered that while most of novice pilots have strong subjective preference 
for the glass cockpit they demonstrated poorer performance on test flights using it compared 
to the traditional cockpit displays. This emphasizes importance both the glass cockpit design 
and high performance of display system. 
 

 
Fig. 1. Dashboard of the MC-21 aircraft. 

 
It is necessary to note an important aspect of the information visualization in the cockpit. 
Most of the widgets used to represent various information in the modern aircraft cockpit are 
standardized. There are several reasons for this. Firstly these widgets have already been test-
ed and made comfortable by a significant part of the pilots. Secondly it makes it easier for pi-
lots to retrain from one type of aircraft to another one (this issue was investigated in [5]). 
Thirdly most cockpit interfaces are designed using ANSYS SCADE Display tools [6], which 
offer a number of pre-built widgets for displaying typical information on cockpit displays. 
Modern aircraft on-board systems are based on the concept of Integrated Modular Avionics 
(IMA) [7, 8]. The concept idea is integration of hardware devices and embedded processors in 
one network operated by a real-time operating system (RTOS). This concept together with 
usage of modern equipment (for example, a LED display instead of mechanical dials) leads to 
reducing number of devices and cables, reducing the aircraft weight that results in more ef-
fective fuel consumption. Therefore implementation of the visualization component for air-
craft has its own additional specifics related to the equipment used on board and operating 
system.  
One more very important aspect of the design of onboard cockpit systems (including pilot 
display rendering) is that they belong to the class of systems critical from the safety point of 
view. A critical safety or life-saving system is a system whose failure or malfunction could re-
sult in one of the following: death or serious injury to people, loss or serious damage to 
equipment / property or damage to the environment. When designing such systems for an 
aircraft cockpit, it is necessary to comply with the requirements of such standards as ARINC 
653 [9] for the operating system and OpenGL SC (Safety Critical) [10] for visualization sys-
tem.  



2. Aircraft flight instruments visualization 
A large amount of flight information must be visualized on the cockpit displays. This infor-
mation, coming from a wide variety of devices, must be displayed at the same time. The pri-
mary flight display (PFD) is used in modern aircraft to display most important flight infor-
mation. FAA regulation describes that a PFD must include an airspeed indicator, turn coordi-
nator, attitude indicator, heading indicator, altimeter, and vertical speed indicator. The de-
tails of the display layout on a primary flight display can vary enormously, depending on the 
aircraft, the aircraft's manufacturer, the specific model of PFD, certain settings chosen by the 
pilot and various internal options specified by the aircraft's owner. However the great majori-
ty of PFDs follows a similar layout. Examples of layout on a primary flight display developed 
for Sukhoi Superjet and MC-21 are presented in the Fig. 2 and 3. 
 

 
Fig. 2. PFD developed for Sukhoi Superjet aircraft. 

 



 
Fig. 3. PFD developed for MC-21 aircraft. 

 

 
Fig. 4. State of the aircraft doors. 

 
Additionally the number of widgets can be used to display such technical characteristics as 
engine speed, oil pressure, fuel quantity, various pneumatic, hydraulic and electrical circuits. 
Also there are various kinds of warnings and alarm signals which should be displayed on 
screen. An example of the widget showing the “open” or “closed” state of the aircraft doors is 
shown in Fig. 4. 



3. Environment visualization 
In addition to the flight instruments the pilots also need information about the environment, 
such as a navigation map, a weather map, other aircrafts nearby, relief of the surrounding ar-
ea, as well as detailed information about the aerodrome where they plan to land. Providing 
this information is a perspective way of civil aircraft glass cockpit improvement. More and 
more aircrafts are supplied by wide LCD displays where the environment can be visualized.  
An important tool that is always present on cockpit displays is the Navigation Display (exam-
ples are shown in Fig. 5 and 6). The Navigation Display (ND) screen shows the aircraft's lat-
eral navigation status. Typically it has the ability to display different modes and functions: 
route flown, VHF omni-directional radio range, Instrument Landing System, Weather Radar 
(like it is shown in Fig. 5), TCAS (Traffic alert and Collision Avoidance System) etc. 

 

 
Fig. 5. Airbus navigation display prefixed waypoints  

 

 
Fig. 6. Navigation display (ND). 
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Pilot’s request for such visualization is growing while its implementation is rather complex 
problem. The situation results in some uncertified additional tools which pilots use on small 
private jets. For example, the tool from Horizon company [11] was elaborated by pilots and 
can be installed on tablets. Of course this product is not elaborated under avionic standards 
and is not safety critical. So it can be used only as additional device in private flights and un-
der responsibility of the pilot. But it demonstrates what pilot considers as useful and helpful 
visualization. Fig. 7 presents 3D Synthetic Vision which provides an indication of the air-
craft’s attitude as well as the area surrounding the aircraft such as terrain, nearby ChartEle-
ments, Runways and so on. The terrain is visualized in warning colors depending on vertical 
distance to it. Useful flight information is displayed in a PFD like style (such as groundspeed, 
altitude, vertical speed, destination etc.). 
 

 
Fig. 7. 3D Synthetic Vision from the Horison company. 

 
The company also proposes other screens containing environment information in visual 
form. For example, moving map can display landmarks, streets and highways, rivers and 
lakes, country borders, airport and taxiway charts, etc. 

4. Peculiarity of the elaboration of the aircraft visualiza-
tion system 

The implementation of any onboard software should take into account the specifics of the 
hardware. As a rule, aircraft onboard systems do not use the latest high-speed processors but 
reliable processors that have been used for many years and for which the problems of "child-
hood diseases" have already been solved. Typical examples are QorIQ PowerPC processors 
[12] with Embedded Radeon™ E4690, E8860 GPUs [13] or NXP i.MX 6 SoC Processor Fami-
ly [14] with Vivante Graphics Processors [15]. These processors have a relatively low energy 
consuming and performance. Therefore to obtain the required rendering speed the software 
implementation of visualization system must be optimized for the class of applications used 
in the aircraft cockpit. 
Most interfaces of civil aircraft cockpit are currently being developed using the ANSYS 
SCADE Display tools [6]. The code generated by this system assumes the use of the OpenGL 
library for visualization of interface widgets. Since the visualization system must be Safety 
Critical, then the OpenGL SC library should be used. Currently, there are two significantly dif-



ferent OpenGL SC standards in use: OpenGL SC 1.0.1 and OpenGL SC 2.0. The significant 
difference between OpenGL SC 1.0.1 and OpenGL SC 2.0 is presence of programmable 
shaders in 2.0. Some functionality version 1.0.1 is removed in 2.0 and can be replaced with 
shader programs. In other words, OpenGL SC 2.0 emphasizes a programmable 3D graphics 
pipeline versus the fixed functionality of OpenGL SC 1.0.1. The high level differences between 
the two graphics pipeline architectures are shown in Fig. 8 [16]. One can see that it is signifi-
cant change going from OpenGL SC 1.0.1 to OpenGL SC 2.0. With OpenGL SC 2.0 you need 
to manage vertex transformations, lighting, texturing using OpenGL Shading Language 
(GLSL) vertex and fragment shaders. 
 

 
Fig. 8. Differences between fixed graphics pipeline and programmable graphics pipeline 

 
Thus, to develop the visualization system for the cockpit we need to implement the OpenGL 
SC library according to one of these standards. To ensure certification of the developed 
equipment, the entire design process must comply with the standard DO-178C [17], Software 
Considerations in Airborne Systems and Equipment Certification is the primary document by 
which the certification authorities such as FAA, EASA and Transport Canada approve all 
commercial software-based aerospace systems. Access to the source code is a main require-
ment for the software certification process. This is why no proprietary binary libraries can be 
used in the development of onboard equipment. In particular, this applies to the OpenGL li-
brary needed to visualize the state of the aircraft and the environment on cockpit displays.  
For Safety Critical onboard cockpit systems we have to use RTOS which satisfies ARINC 653 
standard. ARINC 653 does not permit using dynamic memory allocation and releasing, also it 
does not permit multithreading. Fortunately we developed our visualization under JetOS 
[18], which supports the special extension of ARINC 653 that allows the use of multicore pro-
cessors. This extension is called Asymmetric Multi-Processing (AMP). So we could improve 
the rendering speed by using multicore processors without deviating from the standards. 
There is an important difference between the AMP technology and multithreading used un-
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der Linux to accelerate visualization on multicore computers [19]. While multithreading en-
sures the efficient concurrent work of several threads in the same address space the AMP 
technology in JetOS supports running several modules (i.e., JetOS instances) on different 
processor cores independently of other modules. This approach guarantees the safety and re-
liability required for the onboard software. However it is less efficient than the multithread-
ing technology. In addition the use of AMP technology requires significantly different organi-
zation of parallel computing. 

5. Proposed solutions 
As it was mentioned above the main part of pilot display visualization system is OpenGL SC 
library. There are two ways to implement it for avionic needs. The first way is its purely soft-
ware implementation and the second one is to use the GPU hardware support. Certainly the 
software library will be slower than hardware one. However the software solution is much 
easier to optimize for special applications [20]. Also the software solution is simpler to certi-
fy. We have implemented both versions of the OpenGL SC library. 
A lot of algorithms for the software implementation of OpenGL are described in the litera-
ture, for example, [20-22]. Its implementation on modern powerful computers, like Intel i7-
4770 3.4 GHz, gives quite acceptable rendering speed for typical aviation applications: ~ 50 
frames per second. The speed is close to the values shown by the OpenGL driver for the 
NVIDIA Quadro 410 video card. Unfortunately the same implementation of the OpenGL li-
brary on a typical aircraft computer based on the PowerPC e500mc processor, 4 cores, 1 GHz 
[12] or NXP i.MX6 [14] does not provide the required performance. For example, the speed 
for PFD application shown in Fig. 3 is less than 2 fps on these computers. 
Such rendering speed is unacceptable. Thus we had to develop own implementation of 
OpenGL SC and to optimize it for avionics applications to ensure an acceptable rendering 
speed. Our optimization was based on the applications used for visualization in the cockpit 
displays. Most of them use the visualization of 2D objects only. Mainly they visualize the 
readings of various devices in digital and analog forms, the spatial attitude of the aircraft, var-
ious indicators, meteorological and cartographic data. Such visualization uses a limited num-
ber of combinations of OpenGL instructions. Basing on this fact we managed to considerably 
speed up rendering for dedicated applications.  
In avionics applications the greater part of the visualization time is taken by rasterization al-
gorithms. We focused on the rasterization procedure acceleration and succeeded by develop-
ing the following approaches [19]: 

1. To compute various quantities (Z-coordinates, color, or texture coordinates) inside a 
triangle we used linear interpolation instead of directly barycentric coordinates calcu-
lation. This accelerated the rasterization approximately by a factor of 1.9. 

2. Whenever possible we used fixed point arithmetic instead of floating point one.  This 
accelerated the rasterization approximately by a factor of 2.2. 

3. For value computations in a row of pixels inside a triangle we used a set of special in-
trinsic functions. The operations to be done for a given pixel depend on a number of 
conditions which take a significant amount of time to check. But these conditions are 
the same for all pixels of the triangle. So we can check this condition once and then ap-
ply the specified special function for all pixels inside triangle without additional check-
ing. This accelerated the rasterization approximately by a factor of 1.7. 

These approaches provide up to 7x faster rendering which is still insufficient for most practi-
cal aviation applications. Since both processors (that are supposed to be used in aircraft) have 
multiple cores the parallelizing of visualization procedure is a natural way to speed up render-
ing. In [22] the multithreading under Linux was used for this purpose but as was said above 
multithreading is not permitted for avionics. So we elaborated own parallel computing tech-
nology for parallelization of OpenGL SC using allowed AMP technology. The main idea of our 
approach is that the application runs on one processor core and the rendering of sequential 



frames occurs in parallel on other processor cores. The synchronization developed by us en-
sures the correct rendering of the prepared images on the display. The details of our solution 
are described in [23]. Parallel visualization using AMP technology gives additional rendering 
acceleration from 1.5 to 3.4 times depending on application and processor. The ultimate limi-
tation of speed is caused by copying an image from the processor memory to the screen pro-
cedure which cannot be done in parallel. 
Parallelization using AMP technology gives acceleration but nevertheless achieved rendering 
speed still is not satisfactory for some typical applications. Moreover for most of the analyzed 
applications satisfactory speeds were achieved only when using four processor cores. But this 
is not always permissible since there are other consumers of computing resources in the on-
board system. For these reasons we elaborated hardware based OpenGL SC implementation 
which uses the hardware acceleration of promising platform i.MX6 with the Vivante GPU. 
Implementetion of the hardware OpenGL SC library was based on the open source MESA 
package [24]. The MESA package cannot be used directly under JetOS RTOS. Its adaptation 
requires significant efforts to solve the following problems: 

1. Only appropriate JetOS special functions can be used to allocate memory. 
2. Memory allocation is allowed only at the partition initialization stage. 
3. Dynamic memory allocation, releasing memory is prohibited. This means that the cor-

responding MESA calls must be excluded or rewritten using own memory manager. 
4. Any multithreading in accordance with the ARINC 653 specification cannot be used. 

Therefore the MESA calls using mutex objects should be excluded or rewritten. 
5. All code redundant for OpenGL SC must be excluded according to DO-178C regula-

tions. 
After the MESA adaptation we provided support for the OpenGL SC versions 1.0.1 and 2.0. It 
required development of a code generator which creates code in accordance to the header file 
of corresponding library version. The detailed description of problems of the hardware 
OpenGL SC implementation and our solutions to them are in [25]. It should be also noted 
that certification of OpenGL SC library with hardware acceleration is more difficult task then 
for software one. 

6. Results and discussions 
Both developed OpenGL SC versions, software and hardware ones, were tested on the same 
set of aviation applications. Besides Sukhoi Superjet and MC-21 PFD (Fig. 2 and 3) we used 
several test applications: GlassCockpit (Fig. 9), relatively simple Counters and FlightDisplay, 
terrain  visualization (Fig. 10), Doors (shown on Fig. 4), Navigation display (ND, Fig. 6) and 
the Aerodrom Moving Map (AMM) shown on Fig. 11. We compared rendering speeds on the 
i.MX6 platform using the software implementation of the OpenGL SC 1.0.1 (SWGL) and the 
hardware implementation of OpenGL (HWGL). Test results are shown in Table 1. Software 
OpenGL was implemented with usage of 1 (SWGL 1 column) or 4 (SWGL 4 column) processor 
cores. 
Table 1. Rendering speed (in frames per second) of applications for various OpenGL imple-
mentations. 

 SWGL 1 SWGL 4 HWGL 

SSJ_PFD (fig. 2) 5.9 13.8 10.8 

MC21_PFD (fig. 3) 6.3 15.6 20.0 

Counters 23.9 35.4 60 

GlassCockpit (fig. 9) 10.5 28.7 29.7 

FlightDisplay 9.7 26.4 60 

Terrain (fig. 10) 7.7 20.9 60 

Doors (fig. 4) 12.0 34.7 60 

ND (fig. 6) 22.5 40.3 60 

AMM (fig. 11) 5.6 9.8 15.3 



 

 
Fig. 9. GlassCockpit application. 

 

 
Fig. 10. Terrain visualization application. 

 



 
Fig.11. Aerodrome Moving Map application (AMM). 

 
It should be noted that the 60 frames per second shown in the table for some applications is 
limited to synchronization with the display refresh rate. The real speed of hardware OpenGL 
SC library for these applications is higher. Thus the use of the Vivante GPU support for the 
OpenGL SC 1.0.1 library implementation under the JetOS operating system can achieve sig-
nificant rendering acceleration. 
It should also be noted that the obtained rendering speed for the SSJ PFD and AMM applica-
tions is insufficient for practical use in onboard systems. Analysis of the AMM application 
showed that it calls the hardware OpenGL in inefficient way. It used 1227 calls to the glDraw-
Elements() function to render one frame. When we united groups of primitives of the same 
color it turned out that it was enough to use only 7 calls of the glDrawElements() function to 
draw one frame. Rendering speed increased from 15.3 to 60 frames per second. Hardware ac-
celerated OpenGL has too much overhead for calling the glDrawElements() function: loading 
data into the GPU. Similar problems are for the SSJ PFD application. Rendering a single 
frame uses more than 600 calls to the glDrawArrays() function. The application code was 
generated using the SCADE package. In general it can be optimized but this not a simple task. 

7. Conclusion 
Two versions of the OpenGL SC library – software and hardware ones – were implemented 
by us. They work under the JetOS real-time operating system which complies with theARINC 
653 standard. Certainly performance of the software library is lower than hardware one. 
However the software solution can be much easier optimized for specific applications and its 
certification is much easier. The studies showed that the rendering speed of software OpenGL 
SC library is not satisfactory for some application even if parallel processing via AMP tech-
nology is used.  
The hardware OpenGL SC library was implemented for prospective processor i.MX6 with the 
Vivante GPU. In most cases the hardware acceleration of the Vivante processor allowed to get 
acceptable rendering speeds for onboard equipment. However in some cases the effective us-
es of OpenGL SC with hardware acceleration requires optimization or even rewriting of the 
application code taking into account the specifics of the GPU pipeline. Also the question 
about possibility to certify the hardware OpenGL SC code against DO-178C standard remains 
open yet. In reality this is challenging task. But its solution will allow us to create high per-
formance visualization system for the pilot displays in aircraft cockpit. 
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